Non-dissipative boundary feedback for Rayleigh and Timoshenko beams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-dissipative boundary feedback for Rayleigh and Timoshenko beams

We show that a non-dissipative feedback that has been shown in the literature to exponentially stabilize an Euler-Bernoulli beam makes a Rayleigh beam and a Timoshenko beam unstable.

متن کامل

Riesz Basis Property of Timoshenko Beams with Boundary Feedback Control

A Timoshenko beam equation with boundary feedback control is considered. By an abstract result on the Riesz basis generation for the discrete operators in the Hilbert spaces, we show that the closed-loop system is a Riesz system, that is, the sequence of generalized eigenvectors of the closed-loop system forms a Riesz basis in the state Hilbert space. 1. Introduction. The boundary feedback stab...

متن کامل

Transverse Vibration for Non-uniform Timoshenko Nano-beams

In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams.  The governing equations and the boundary conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method (GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for pinned-pinned...

متن کامل

Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs

The dynamical stability of planar networks of non-uniform Timoshenko beams system is considered. Suppose that the displacement and rotational angle is continuous at the common vertex of this network and the bending moment and shear force satisfies Kirchhoff’s laws, respectively. Timedelay terms exist in control inputs at exterior vertices. The feedback control laws are designed to stabilize thi...

متن کامل

transverse vibration for non-uniform timoshenko nano-beams

in this paper, eringen’s nonlocal elasticity and timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams.  the governing equations and the boundary conditions are derived using hamilton’s principle. a generalized differential quadrature method (gdqm) is utilized for solving the governing equations of non-uniform timoshenko nano-beam for pinned-pinned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systems & Control Letters

سال: 2010

ISSN: 0167-6911

DOI: 10.1016/j.sysconle.2010.07.002